Integral of $$$\frac{14}{\sqrt{3 - x}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{14}{\sqrt{3 - x}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=14$$$ and $$$f{\left(x \right)} = \frac{1}{\sqrt{3 - x}}$$$:
$${\color{red}{\int{\frac{14}{\sqrt{3 - x}} d x}}} = {\color{red}{\left(14 \int{\frac{1}{\sqrt{3 - x}} d x}\right)}}$$
Let $$$u=3 - x$$$.
Then $$$du=\left(3 - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
The integral can be rewritten as
$$14 {\color{red}{\int{\frac{1}{\sqrt{3 - x}} d x}}} = 14 {\color{red}{\int{\left(- \frac{1}{\sqrt{u}}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:
$$14 {\color{red}{\int{\left(- \frac{1}{\sqrt{u}}\right)d u}}} = 14 {\color{red}{\left(- \int{\frac{1}{\sqrt{u}} d u}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{1}{2}$$$:
$$- 14 {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=- 14 {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=- 14 {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=- 14 {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=- 14 {\color{red}{\left(2 \sqrt{u}\right)}}$$
Recall that $$$u=3 - x$$$:
$$- 28 \sqrt{{\color{red}{u}}} = - 28 \sqrt{{\color{red}{\left(3 - x\right)}}}$$
Therefore,
$$\int{\frac{14}{\sqrt{3 - x}} d x} = - 28 \sqrt{3 - x}$$
Add the constant of integration:
$$\int{\frac{14}{\sqrt{3 - x}} d x} = - 28 \sqrt{3 - x}+C$$
Answer
$$$\int \frac{14}{\sqrt{3 - x}}\, dx = - 28 \sqrt{3 - x} + C$$$A