Integral of $$$\frac{1}{\ln\left(n^{3}\right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{3 \ln\left(n\right)}\, dn$$$.
Solution
The input is rewritten: $$$\int{\frac{1}{\ln{\left(n^{3} \right)}} d n}=\int{\frac{1}{3 \ln{\left(n \right)}} d n}$$$.
Apply the constant multiple rule $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(n \right)} = \frac{1}{\ln{\left(n \right)}}$$$:
$${\color{red}{\int{\frac{1}{3 \ln{\left(n \right)}} d n}}} = {\color{red}{\left(\frac{\int{\frac{1}{\ln{\left(n \right)}} d n}}{3}\right)}}$$
This integral (Logarithmic Integral) does not have a closed form:
$$\frac{{\color{red}{\int{\frac{1}{\ln{\left(n \right)}} d n}}}}{3} = \frac{{\color{red}{\operatorname{li}{\left(n \right)}}}}{3}$$
Therefore,
$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}$$
Add the constant of integration:
$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}+C$$
Answer
$$$\int \frac{1}{3 \ln\left(n\right)}\, dn = \frac{\operatorname{li}{\left(n \right)}}{3} + C$$$A