Integral of $$$e x^{29}$$$

The calculator will find the integral/antiderivative of $$$e x^{29}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int e x^{29}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=e$$$ and $$$f{\left(x \right)} = x^{29}$$$:

$${\color{red}{\int{e x^{29} d x}}} = {\color{red}{e \int{x^{29} d x}}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=29$$$:

$$e {\color{red}{\int{x^{29} d x}}}=e {\color{red}{\frac{x^{1 + 29}}{1 + 29}}}=e {\color{red}{\left(\frac{x^{30}}{30}\right)}}$$

Therefore,

$$\int{e x^{29} d x} = \frac{e x^{30}}{30}$$

Add the constant of integration:

$$\int{e x^{29} d x} = \frac{e x^{30}}{30}+C$$

Answer

$$$\int e x^{29}\, dx = \frac{e x^{30}}{30} + C$$$A


Please try a new game Rotatly