Integral of $$$e x^{29}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e x^{29}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=e$$$ and $$$f{\left(x \right)} = x^{29}$$$:
$${\color{red}{\int{e x^{29} d x}}} = {\color{red}{e \int{x^{29} d x}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=29$$$:
$$e {\color{red}{\int{x^{29} d x}}}=e {\color{red}{\frac{x^{1 + 29}}{1 + 29}}}=e {\color{red}{\left(\frac{x^{30}}{30}\right)}}$$
Therefore,
$$\int{e x^{29} d x} = \frac{e x^{30}}{30}$$
Add the constant of integration:
$$\int{e x^{29} d x} = \frac{e x^{30}}{30}+C$$
Answer
$$$\int e x^{29}\, dx = \frac{e x^{30}}{30} + C$$$A