Integral of $$$\frac{1}{a x^{2}}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{a x^{2}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{a}$$$ and $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\frac{1}{a x^{2}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{2}} d x}}{a}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{a}=\frac{{\color{red}{\int{x^{-2} d x}}}}{a}=\frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{a}=\frac{{\color{red}{\left(- x^{-1}\right)}}}{a}=\frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{a}$$
Therefore,
$$\int{\frac{1}{a x^{2}} d x} = - \frac{1}{a x}$$
Add the constant of integration:
$$\int{\frac{1}{a x^{2}} d x} = - \frac{1}{a x}+C$$
Answer
$$$\int \frac{1}{a x^{2}}\, dx = - \frac{1}{a x} + C$$$A