Integral of $$$\frac{1}{4 \cos{\left(x \right)} + 5}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{4 \cos{\left(x \right)} + 5}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{4 \cos{\left(x \right)} + 5}\, dx$$$.

Solution

Rewrite the integrand using the formula $$$\cos{\left(x \right)}=\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}$$$:

$${\color{red}{\int{\frac{1}{4 \cos{\left(x \right)} + 5} d x}}} = {\color{red}{\int{\frac{1}{\frac{4 \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} + 5} d x}}}$$

Let $$$u=\tan{\left(\frac{x}{2} \right)}$$$.

Then $$$x=2 \operatorname{atan}{\left(u \right)}$$$ and $$$dx=\left(2 \operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{2}{u^{2} + 1} du$$$ (steps can be seen »).

Thus,

$${\color{red}{\int{\frac{1}{\frac{4 \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} + 5} d x}}} = {\color{red}{\int{\frac{2}{\left(u^{2} + 1\right) \left(\frac{4 \left(1 - u^{2}\right)}{u^{2} + 1} + 5\right)} d u}}}$$

Simplify:

$${\color{red}{\int{\frac{2}{\left(u^{2} + 1\right) \left(\frac{4 \left(1 - u^{2}\right)}{u^{2} + 1} + 5\right)} d u}}} = {\color{red}{\int{\frac{2}{u^{2} + 9} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \frac{1}{u^{2} + 9}$$$:

$${\color{red}{\int{\frac{2}{u^{2} + 9} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u^{2} + 9} d u}\right)}}$$

Let $$$v=\frac{u}{3}$$$.

Then $$$dv=\left(\frac{u}{3}\right)^{\prime }du = \frac{du}{3}$$$ (steps can be seen »), and we have that $$$du = 3 dv$$$.

Therefore,

$$2 {\color{red}{\int{\frac{1}{u^{2} + 9} d u}}} = 2 {\color{red}{\int{\frac{1}{3 \left(v^{2} + 1\right)} d v}}}$$

Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(v \right)} = \frac{1}{v^{2} + 1}$$$:

$$2 {\color{red}{\int{\frac{1}{3 \left(v^{2} + 1\right)} d v}}} = 2 {\color{red}{\left(\frac{\int{\frac{1}{v^{2} + 1} d v}}{3}\right)}}$$

The integral of $$$\frac{1}{v^{2} + 1}$$$ is $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$\frac{2 {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{3} = \frac{2 {\color{red}{\operatorname{atan}{\left(v \right)}}}}{3}$$

Recall that $$$v=\frac{u}{3}$$$:

$$\frac{2 \operatorname{atan}{\left({\color{red}{v}} \right)}}{3} = \frac{2 \operatorname{atan}{\left({\color{red}{\left(\frac{u}{3}\right)}} \right)}}{3}$$

Recall that $$$u=\tan{\left(\frac{x}{2} \right)}$$$:

$$\frac{2 \operatorname{atan}{\left(\frac{{\color{red}{u}}}{3} \right)}}{3} = \frac{2 \operatorname{atan}{\left(\frac{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}{3} \right)}}{3}$$

Therefore,

$$\int{\frac{1}{4 \cos{\left(x \right)} + 5} d x} = \frac{2 \operatorname{atan}{\left(\frac{\tan{\left(\frac{x}{2} \right)}}{3} \right)}}{3}$$

Add the constant of integration:

$$\int{\frac{1}{4 \cos{\left(x \right)} + 5} d x} = \frac{2 \operatorname{atan}{\left(\frac{\tan{\left(\frac{x}{2} \right)}}{3} \right)}}{3}+C$$

Answer

$$$\int \frac{1}{4 \cos{\left(x \right)} + 5}\, dx = \frac{2 \operatorname{atan}{\left(\frac{\tan{\left(\frac{x}{2} \right)}}{3} \right)}}{3} + C$$$A


Please try a new game Rotatly