Integral of $$$\frac{1}{\cos{\left(x \right)} + 1}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{\cos{\left(x \right)} + 1}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx$$$.

Solution

Rewrite the cosine using the double angle formula $$$\cos\left(x\right)=2\cos^2\left(\frac{x}{2}\right)-1$$$ and simplify:

$${\color{red}{\int{\frac{1}{\cos{\left(x \right)} + 1} d x}}} = {\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}}$$

Let $$$u=\frac{x}{2}$$$.

Then $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen »), and we have that $$$dx = 2 du$$$.

The integral can be rewritten as

$${\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}}$$

Rewrite the integrand in terms of the secant:

$${\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}$$

The integral of $$$\sec^{2}{\left(u \right)}$$$ is $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:

$${\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = {\color{red}{\tan{\left(u \right)}}}$$

Recall that $$$u=\frac{x}{2}$$$:

$$\tan{\left({\color{red}{u}} \right)} = \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}$$

Therefore,

$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}$$

Add the constant of integration:

$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}+C$$

Answer

$$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx = \tan{\left(\frac{x}{2} \right)} + C$$$A


Please try a new game Rotatly