Integral of $$$- \sin{\left(1 \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \sin{\left(1 \right)}\right)\, dx$$$.
The trigonometric functions expect the argument in radians. To enter the argument in degrees, multiply it by pi/180, e.g. write 45° as 45*pi/180, or use the appropriate function adding 'd', e.g. write sin(45°) as sind(45).
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=- \sin{\left(1 \right)}$$$:
$${\color{red}{\int{\left(- \sin{\left(1 \right)}\right)d x}}} = {\color{red}{\left(- x \sin{\left(1 \right)}\right)}}$$
Therefore,
$$\int{\left(- \sin{\left(1 \right)}\right)d x} = - x \sin{\left(1 \right)}$$
Add the constant of integration:
$$\int{\left(- \sin{\left(1 \right)}\right)d x} = - x \sin{\left(1 \right)}+C$$
Answer
$$$\int \left(- \sin{\left(1 \right)}\right)\, dx = - x \sin{\left(1 \right)} + C$$$A
Please try a new game Rotatly