Integral of $$$- \frac{1}{x}$$$

The calculator will find the integral/antiderivative of $$$- \frac{1}{x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- \frac{1}{x}\right)\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:

$${\color{red}{\int{\left(- \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x}\right)}}$$

The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$- {\color{red}{\int{\frac{1}{x} d x}}} = - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Therefore,

$$\int{\left(- \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)}$$

Add the constant of integration:

$$\int{\left(- \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)}+C$$

Answer

$$$\int \left(- \frac{1}{x}\right)\, dx = - \ln\left(\left|{x}\right|\right) + C$$$A