Integral of $$$y \sin^{2}{\left(y \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int y \sin^{2}{\left(y \right)}\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=y \sin^{2}{\left(y \right)}$$$:
$${\color{red}{\int{y \sin^{2}{\left(y \right)} d x}}} = {\color{red}{x y \sin^{2}{\left(y \right)}}}$$
Therefore,
$$\int{y \sin^{2}{\left(y \right)} d x} = x y \sin^{2}{\left(y \right)}$$
Add the constant of integration:
$$\int{y \sin^{2}{\left(y \right)} d x} = x y \sin^{2}{\left(y \right)}+C$$
Answer
$$$\int y \sin^{2}{\left(y \right)}\, dx = x y \sin^{2}{\left(y \right)} + C$$$A
Please try a new game Rotatly