Integral of $$$\frac{1}{y^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{y^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{y^{2}}\, dy$$$.

Solution

Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$${\color{red}{\int{\frac{1}{y^{2}} d y}}}={\color{red}{\int{y^{-2} d y}}}={\color{red}{\frac{y^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- y^{-1}\right)}}={\color{red}{\left(- \frac{1}{y}\right)}}$$

Therefore,

$$\int{\frac{1}{y^{2}} d y} = - \frac{1}{y}$$

Add the constant of integration:

$$\int{\frac{1}{y^{2}} d y} = - \frac{1}{y}+C$$

Answer

$$$\int \frac{1}{y^{2}}\, dy = - \frac{1}{y} + C$$$A


Please try a new game Rotatly