Integral of $$$y \sin{\left(x y \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int y \sin{\left(x y \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=y$$$ and $$$f{\left(x \right)} = \sin{\left(x y \right)}$$$:
$${\color{red}{\int{y \sin{\left(x y \right)} d x}}} = {\color{red}{y \int{\sin{\left(x y \right)} d x}}}$$
Let $$$u=x y$$$.
Then $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{y}$$$.
The integral can be rewritten as
$$y {\color{red}{\int{\sin{\left(x y \right)} d x}}} = y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{y}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}} = y {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{y}}}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Recall that $$$u=x y$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{x y}} \right)}$$
Therefore,
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}$$
Add the constant of integration:
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}+C$$
Answer
$$$\int y \sin{\left(x y \right)}\, dx = - \cos{\left(x y \right)} + C$$$A