Integral of $$$x \cos{\left(x^{2} \right)}$$$

The calculator will find the integral/antiderivative of $$$x \cos{\left(x^{2} \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x \cos{\left(x^{2} \right)}\, dx$$$.

Solution

Let $$$u=x^{2}$$$.

Then $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (steps can be seen »), and we have that $$$x dx = \frac{du}{2}$$$.

Thus,

$${\color{red}{\int{x \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$

Recall that $$$u=x^{2}$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{2} = \frac{\sin{\left({\color{red}{x^{2}}} \right)}}{2}$$

Therefore,

$$\int{x \cos{\left(x^{2} \right)} d x} = \frac{\sin{\left(x^{2} \right)}}{2}$$

Add the constant of integration:

$$\int{x \cos{\left(x^{2} \right)} d x} = \frac{\sin{\left(x^{2} \right)}}{2}+C$$

Answer

$$$\int x \cos{\left(x^{2} \right)}\, dx = \frac{\sin{\left(x^{2} \right)}}{2} + C$$$A


Please try a new game Rotatly