Integral of $$$x^{2} \sin{\left(3 x \right)}$$$

The calculator will find the integral/antiderivative of $$$x^{2} \sin{\left(3 x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x^{2} \sin{\left(3 x \right)}\, dx$$$.

Solution

For the integral $$$\int{x^{2} \sin{\left(3 x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=x^{2}$$$ and $$$\operatorname{dv}=\sin{\left(3 x \right)} dx$$$.

Then $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{\sin{\left(3 x \right)} d x}=- \frac{\cos{\left(3 x \right)}}{3}$$$ (steps can be seen »).

The integral can be rewritten as

$${\color{red}{\int{x^{2} \sin{\left(3 x \right)} d x}}}={\color{red}{\left(x^{2} \cdot \left(- \frac{\cos{\left(3 x \right)}}{3}\right)-\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- \frac{x^{2} \cos{\left(3 x \right)}}{3} - \int{\left(- \frac{2 x \cos{\left(3 x \right)}}{3}\right)d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=- \frac{2}{3}$$$ and $$$f{\left(x \right)} = x \cos{\left(3 x \right)}$$$:

$$- \frac{x^{2} \cos{\left(3 x \right)}}{3} - {\color{red}{\int{\left(- \frac{2 x \cos{\left(3 x \right)}}{3}\right)d x}}} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} - {\color{red}{\left(- \frac{2 \int{x \cos{\left(3 x \right)} d x}}{3}\right)}}$$

For the integral $$$\int{x \cos{\left(3 x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=\cos{\left(3 x \right)} dx$$$.

Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{\cos{\left(3 x \right)} d x}=\frac{\sin{\left(3 x \right)}}{3}$$$ (steps can be seen »).

So,

$$- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{x \cos{\left(3 x \right)} d x}}}}{3}=- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\left(x \cdot \frac{\sin{\left(3 x \right)}}{3}-\int{\frac{\sin{\left(3 x \right)}}{3} \cdot 1 d x}\right)}}}{3}=- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\left(\frac{x \sin{\left(3 x \right)}}{3} - \int{\frac{\sin{\left(3 x \right)}}{3} d x}\right)}}}{3}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:

$$- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}}}{3} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\left(\frac{\int{\sin{\left(3 x \right)} d x}}{3}\right)}}}{3}$$

Let $$$u=3 x$$$.

Then $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{3}$$$.

Therefore,

$$- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{9} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{9}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{9} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{9}$$

The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{27} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{27}$$

Recall that $$$u=3 x$$$:

$$- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} + \frac{2 \cos{\left({\color{red}{u}} \right)}}{27} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} + \frac{2 \cos{\left({\color{red}{\left(3 x\right)}} \right)}}{27}$$

Therefore,

$$\int{x^{2} \sin{\left(3 x \right)} d x} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} + \frac{2 \cos{\left(3 x \right)}}{27}$$

Add the constant of integration:

$$\int{x^{2} \sin{\left(3 x \right)} d x} = - \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} + \frac{2 \cos{\left(3 x \right)}}{27}+C$$

Answer

$$$\int x^{2} \sin{\left(3 x \right)}\, dx = \left(- \frac{x^{2} \cos{\left(3 x \right)}}{3} + \frac{2 x \sin{\left(3 x \right)}}{9} + \frac{2 \cos{\left(3 x \right)}}{27}\right) + C$$$A


Please try a new game Rotatly