Integral of $$$\frac{1}{x^{\frac{8}{3}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{\frac{8}{3}}}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{8}{3}$$$:
$${\color{red}{\int{\frac{1}{x^{\frac{8}{3}}} d x}}}={\color{red}{\int{x^{- \frac{8}{3}} d x}}}={\color{red}{\frac{x^{- \frac{8}{3} + 1}}{- \frac{8}{3} + 1}}}={\color{red}{\left(- \frac{3 x^{- \frac{5}{3}}}{5}\right)}}={\color{red}{\left(- \frac{3}{5 x^{\frac{5}{3}}}\right)}}$$
Therefore,
$$\int{\frac{1}{x^{\frac{8}{3}}} d x} = - \frac{3}{5 x^{\frac{5}{3}}}$$
Add the constant of integration:
$$\int{\frac{1}{x^{\frac{8}{3}}} d x} = - \frac{3}{5 x^{\frac{5}{3}}}+C$$
Answer
$$$\int \frac{1}{x^{\frac{8}{3}}}\, dx = - \frac{3}{5 x^{\frac{5}{3}}} + C$$$A