Integral of $$$\frac{1}{x^{\frac{8}{3}}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{x^{\frac{8}{3}}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{x^{\frac{8}{3}}}\, dx$$$.

Solution

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{8}{3}$$$:

$${\color{red}{\int{\frac{1}{x^{\frac{8}{3}}} d x}}}={\color{red}{\int{x^{- \frac{8}{3}} d x}}}={\color{red}{\frac{x^{- \frac{8}{3} + 1}}{- \frac{8}{3} + 1}}}={\color{red}{\left(- \frac{3 x^{- \frac{5}{3}}}{5}\right)}}={\color{red}{\left(- \frac{3}{5 x^{\frac{5}{3}}}\right)}}$$

Therefore,

$$\int{\frac{1}{x^{\frac{8}{3}}} d x} = - \frac{3}{5 x^{\frac{5}{3}}}$$

Add the constant of integration:

$$\int{\frac{1}{x^{\frac{8}{3}}} d x} = - \frac{3}{5 x^{\frac{5}{3}}}+C$$

Answer

$$$\int \frac{1}{x^{\frac{8}{3}}}\, dx = - \frac{3}{5 x^{\frac{5}{3}}} + C$$$A


Please try a new game Rotatly