Integral of $$$\frac{x}{\ln\left(x\right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x}{\ln\left(x\right)}\, dx$$$.
Solution
Let $$$u=\ln{\left(x \right)}$$$.
Then $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (steps can be seen »), and we have that $$$\frac{dx}{x} = du$$$.
Thus,
$${\color{red}{\int{\frac{x}{\ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{e^{2 u}}{u} d u}}}$$
Let $$$v=2 u$$$.
Then $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (steps can be seen »), and we have that $$$du = \frac{dv}{2}$$$.
Thus,
$${\color{red}{\int{\frac{e^{2 u}}{u} d u}}} = {\color{red}{\int{\frac{e^{v}}{v} d v}}}$$
This integral (Exponential Integral) does not have a closed form:
$${\color{red}{\int{\frac{e^{v}}{v} d v}}} = {\color{red}{\operatorname{Ei}{\left(v \right)}}}$$
Recall that $$$v=2 u$$$:
$$\operatorname{Ei}{\left({\color{red}{v}} \right)} = \operatorname{Ei}{\left({\color{red}{\left(2 u\right)}} \right)}$$
Recall that $$$u=\ln{\left(x \right)}$$$:
$$\operatorname{Ei}{\left(2 {\color{red}{u}} \right)} = \operatorname{Ei}{\left(2 {\color{red}{\ln{\left(x \right)}}} \right)}$$
Therefore,
$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}$$
Add the constant of integration:
$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}+C$$
Answer
$$$\int \frac{x}{\ln\left(x\right)}\, dx = \operatorname{Ei}{\left(2 \ln\left(x\right) \right)} + C$$$A