Integral of $$$\frac{x}{x - 3}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x}{x - 3}\, dx$$$.
Solution
Rewrite and split the fraction:
$${\color{red}{\int{\frac{x}{x - 3} d x}}} = {\color{red}{\int{\left(1 + \frac{3}{x - 3}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(1 + \frac{3}{x - 3}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{3}{x - 3} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{\frac{3}{x - 3} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{3}{x - 3} d x} + {\color{red}{x}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \frac{1}{x - 3}$$$:
$$x + {\color{red}{\int{\frac{3}{x - 3} d x}}} = x + {\color{red}{\left(3 \int{\frac{1}{x - 3} d x}\right)}}$$
Let $$$u=x - 3$$$.
Then $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
So,
$$x + 3 {\color{red}{\int{\frac{1}{x - 3} d x}}} = x + 3 {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x + 3 {\color{red}{\int{\frac{1}{u} d u}}} = x + 3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x - 3$$$:
$$x + 3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x + 3 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{x}{x - 3} d x} = x + 3 \ln{\left(\left|{x - 3}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{x}{x - 3} d x} = x + 3 \ln{\left(\left|{x - 3}\right| \right)}+C$$
Answer
$$$\int \frac{x}{x - 3}\, dx = \left(x + 3 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A