Integral of $$$\sqrt{u}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sqrt{u}\, du$$$.
Solution
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{1}{2}$$$:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Therefore,
$$\int{\sqrt{u} d u} = \frac{2 u^{\frac{3}{2}}}{3}$$
Add the constant of integration:
$$\int{\sqrt{u} d u} = \frac{2 u^{\frac{3}{2}}}{3}+C$$
Answer
$$$\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3} + C$$$A
Please try a new game Rotatly