Integral of $$$\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}\, dx$$$.

Solution

Let $$$u=\sec{\left(x \right)}$$$.

Then $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.

The integral can be rewritten as

$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$

Recall that $$$u=\sec{\left(x \right)}$$$:

$$- {\color{red}{u}}^{-1} = - {\color{red}{\sec{\left(x \right)}}}^{-1}$$

Therefore,

$$\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x} = - \frac{1}{\sec{\left(x \right)}}$$

Simplify:

$$\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x} = - \cos{\left(x \right)}$$

Add the constant of integration:

$$\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x} = - \cos{\left(x \right)}+C$$

Answer

$$$\int \frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}\, dx = - \cos{\left(x \right)} + C$$$A


Please try a new game Rotatly