Integral of $$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$.
Solution
Rewrite the integrand:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
Let $$$u=\sec{\left(x \right)}$$$.
Then $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.
So,
$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
Recall that $$$u=\sec{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$
Therefore,
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$
Add the constant of integration:
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$
Answer
$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A