Integral of $$$\theta \tan{\left(2 \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \theta \tan{\left(2 \right)}\, d\theta$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ with $$$c=\tan{\left(2 \right)}$$$ and $$$f{\left(\theta \right)} = \theta$$$:
$${\color{red}{\int{\theta \tan{\left(2 \right)} d \theta}}} = {\color{red}{\tan{\left(2 \right)} \int{\theta d \theta}}}$$
Apply the power rule $$$\int \theta^{n}\, d\theta = \frac{\theta^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\tan{\left(2 \right)} {\color{red}{\int{\theta d \theta}}}=\tan{\left(2 \right)} {\color{red}{\frac{\theta^{1 + 1}}{1 + 1}}}=\tan{\left(2 \right)} {\color{red}{\left(\frac{\theta^{2}}{2}\right)}}$$
Therefore,
$$\int{\theta \tan{\left(2 \right)} d \theta} = \frac{\theta^{2} \tan{\left(2 \right)}}{2}$$
Add the constant of integration:
$$\int{\theta \tan{\left(2 \right)} d \theta} = \frac{\theta^{2} \tan{\left(2 \right)}}{2}+C$$
Answer
$$$\int \theta \tan{\left(2 \right)}\, d\theta = \frac{\theta^{2} \tan{\left(2 \right)}}{2} + C$$$A