Integral of $$$\frac{\sqrt{21} \sqrt{x^{3}}}{21}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sqrt{21} \sqrt{x^{3}}}{21}\, dx$$$.
Solution
The input is rewritten: $$$\int{\frac{\sqrt{21} \sqrt{x^{3}}}{21} d x}=\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x}$$$.
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{21}}{21}$$$ and $$$f{\left(x \right)} = x^{\frac{3}{2}}$$$:
$${\color{red}{\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x}}} = {\color{red}{\left(\frac{\sqrt{21} \int{x^{\frac{3}{2}} d x}}{21}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{3}{2}$$$:
$$\frac{\sqrt{21} {\color{red}{\int{x^{\frac{3}{2}} d x}}}}{21}=\frac{\sqrt{21} {\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}}{21}=\frac{\sqrt{21} {\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}}{21}$$
Therefore,
$$\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x} = \frac{2 \sqrt{21} x^{\frac{5}{2}}}{105}$$
Add the constant of integration:
$$\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x} = \frac{2 \sqrt{21} x^{\frac{5}{2}}}{105}+C$$
Answer
$$$\int \frac{\sqrt{21} \sqrt{x^{3}}}{21}\, dx = \frac{2 \sqrt{21} x^{\frac{5}{2}}}{105} + C$$$A