Integral of $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx$$$.

Solution

The input is rewritten: $$$\int{\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}} d x}=\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}$$$.

Let $$$u=\sqrt{x}$$$.

Then $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (steps can be seen »), and we have that $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

The integral can be rewritten as

$${\color{red}{\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}}} = {\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \frac{\sqrt{u^{2} - 1}}{u^{4}}$$$:

$${\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}} = {\color{red}{\left(2 \int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}\right)}}$$

Let $$$u=\cosh{\left(v \right)}$$$.

Then $$$du=\left(\cosh{\left(v \right)}\right)^{\prime }dv = \sinh{\left(v \right)} dv$$$ (steps can be seen »).

Also, it follows that $$$v=\operatorname{acosh}{\left(u \right)}$$$.

Thus,

$$$\frac{\sqrt{ u ^{2} - 1}}{ u ^{4}} = \frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}$$$

Use the identity $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:

$$$\frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}=\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}}$$$

Assuming that $$$\sinh{\left( v \right)} \ge 0$$$, we obtain the following:

$$$\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}} = \frac{\sinh{\left( v \right)}}{\cosh^{4}{\left( v \right)}}$$$

Integral can be rewritten as

$$2 {\color{red}{\int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}}} = 2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}}$$

Multiply the numerator and denominator by $$$\cosh^{2}{\left( v \right)}$$$ and convert $$$\frac{\sinh^{2}{\left( v \right)}}{\cosh^{2}{\left( v \right)}}$$$ into $$$\tanh^{2}{\left( v \right)}$$$:

$$2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}}$$

Let $$$w=\tanh{\left(v \right)}$$$.

Then $$$dw=\left(\tanh{\left(v \right)}\right)^{\prime }dv = \operatorname{sech}^{2}{\left(v \right)} dv$$$ (steps can be seen »), and we have that $$$\operatorname{sech}^{2}{\left(v \right)} dv = dw$$$.

Thus,

$$2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{w^{2} d w}}}$$

Apply the power rule $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$2 {\color{red}{\int{w^{2} d w}}}=2 {\color{red}{\frac{w^{1 + 2}}{1 + 2}}}=2 {\color{red}{\left(\frac{w^{3}}{3}\right)}}$$

Recall that $$$w=\tanh{\left(v \right)}$$$:

$$\frac{2 {\color{red}{w}}^{3}}{3} = \frac{2 {\color{red}{\tanh{\left(v \right)}}}^{3}}{3}$$

Recall that $$$v=\operatorname{acosh}{\left(u \right)}$$$:

$$\frac{2 \tanh^{3}{\left({\color{red}{v}} \right)}}{3} = \frac{2 \tanh^{3}{\left({\color{red}{\operatorname{acosh}{\left(u \right)}}} \right)}}{3}$$

Recall that $$$u=\sqrt{x}$$$:

$$\frac{2 {\color{red}{u}}^{-3} \left(1 + {\color{red}{u}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{u}}\right)^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sqrt{x}}}^{-3} \left(1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}}}{3}$$

Therefore,

$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}$$

Add the constant of integration:

$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}+C$$

Answer

$$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}} + C$$$A


Please try a new game Rotatly