Integral of $$$\frac{\sin{\left(y \right)}}{y}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin{\left(y \right)}}{y}\, dy$$$.
Solution
This integral (Sine Integral) does not have a closed form:
$${\color{red}{\int{\frac{\sin{\left(y \right)}}{y} d y}}} = {\color{red}{\operatorname{Si}{\left(y \right)}}}$$
Therefore,
$$\int{\frac{\sin{\left(y \right)}}{y} d y} = \operatorname{Si}{\left(y \right)}$$
Add the constant of integration:
$$\int{\frac{\sin{\left(y \right)}}{y} d y} = \operatorname{Si}{\left(y \right)}+C$$
Answer
$$$\int \frac{\sin{\left(y \right)}}{y}\, dy = \operatorname{Si}{\left(y \right)} + C$$$A
Please try a new game Rotatly