Integral of $$$\sin{\left(x \right)} \cos{\left(2 \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(x \right)} \cos{\left(2 \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\cos{\left(2 \right)}$$$ and $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\sin{\left(x \right)} \cos{\left(2 \right)} d x}}} = {\color{red}{\cos{\left(2 \right)} \int{\sin{\left(x \right)} d x}}}$$
The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\cos{\left(2 \right)} {\color{red}{\int{\sin{\left(x \right)} d x}}} = \cos{\left(2 \right)} {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Therefore,
$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} d x} = - \cos{\left(2 \right)} \cos{\left(x \right)}$$
Add the constant of integration:
$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} d x} = - \cos{\left(2 \right)} \cos{\left(x \right)}+C$$
Answer
$$$\int \sin{\left(x \right)} \cos{\left(2 \right)}\, dx = - \cos{\left(2 \right)} \cos{\left(x \right)} + C$$$A