Integral of $$$\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}{3}\right)}}$$

Let $$$u=\cos{\left(x \right)}$$$.

Then $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\sin{\left(x \right)} dx = - du$$$.

Therefore,

$$\frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{3} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{3}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{3} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{3}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$

Recall that $$$u=\cos{\left(x \right)}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{3}$$

Therefore,

$$\int{\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{3}$$

Add the constant of integration:

$$\int{\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{3}+C$$

Answer

$$$\int \frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}}\, dx = - \frac{\ln\left(\left|{\cos{\left(x \right)}}\right|\right)}{3} + C$$$A


Please try a new game Rotatly