Integral of $$$\frac{\sin{\left(\theta \right)}}{r}$$$ with respect to $$$\theta$$$

The calculator will find the integral/antiderivative of $$$\frac{\sin{\left(\theta \right)}}{r}$$$ with respect to $$$\theta$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\sin{\left(\theta \right)}}{r}\, d\theta$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ with $$$c=\frac{1}{r}$$$ and $$$f{\left(\theta \right)} = \sin{\left(\theta \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(\theta \right)}}{r} d \theta}}} = {\color{red}{\frac{\int{\sin{\left(\theta \right)} d \theta}}{r}}}$$

The integral of the sine is $$$\int{\sin{\left(\theta \right)} d \theta} = - \cos{\left(\theta \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(\theta \right)} d \theta}}}}{r} = \frac{{\color{red}{\left(- \cos{\left(\theta \right)}\right)}}}{r}$$

Therefore,

$$\int{\frac{\sin{\left(\theta \right)}}{r} d \theta} = - \frac{\cos{\left(\theta \right)}}{r}$$

Add the constant of integration:

$$\int{\frac{\sin{\left(\theta \right)}}{r} d \theta} = - \frac{\cos{\left(\theta \right)}}{r}+C$$

Answer

$$$\int \frac{\sin{\left(\theta \right)}}{r}\, d\theta = - \frac{\cos{\left(\theta \right)}}{r} + C$$$A


Please try a new game Rotatly