Integral of $$$\sin{\left(\theta \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(\theta \right)}\, d\theta$$$.
Solution
The integral of the sine is $$$\int{\sin{\left(\theta \right)} d \theta} = - \cos{\left(\theta \right)}$$$:
$${\color{red}{\int{\sin{\left(\theta \right)} d \theta}}} = {\color{red}{\left(- \cos{\left(\theta \right)}\right)}}$$
Therefore,
$$\int{\sin{\left(\theta \right)} d \theta} = - \cos{\left(\theta \right)}$$
Add the constant of integration:
$$\int{\sin{\left(\theta \right)} d \theta} = - \cos{\left(\theta \right)}+C$$
Answer
$$$\int \sin{\left(\theta \right)}\, d\theta = - \cos{\left(\theta \right)} + C$$$A
Please try a new game Rotatly