Integral of $$$\sin{\left(4 x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(4 x \right)}\, dx$$$.
Solution
Let $$$u=4 x$$$.
Then $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{4}$$$.
The integral can be rewritten as
$${\color{red}{\int{\sin{\left(4 x \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{4}\right)}}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Recall that $$$u=4 x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\cos{\left({\color{red}{\left(4 x\right)}} \right)}}{4}$$
Therefore,
$$\int{\sin{\left(4 x \right)} d x} = - \frac{\cos{\left(4 x \right)}}{4}$$
Add the constant of integration:
$$\int{\sin{\left(4 x \right)} d x} = - \frac{\cos{\left(4 x \right)}}{4}+C$$
Answer
$$$\int \sin{\left(4 x \right)}\, dx = - \frac{\cos{\left(4 x \right)}}{4} + C$$$A