Integral of $$$\frac{\sin{\left(2 z \right)}}{z}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin{\left(2 z \right)}}{z}\, dz$$$.
Solution
Let $$$u=2 z$$$.
Then $$$du=\left(2 z\right)^{\prime }dz = 2 dz$$$ (steps can be seen »), and we have that $$$dz = \frac{du}{2}$$$.
So,
$${\color{red}{\int{\frac{\sin{\left(2 z \right)}}{z} d z}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}}$$
This integral (Sine Integral) does not have a closed form:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = {\color{red}{\operatorname{Si}{\left(u \right)}}}$$
Recall that $$$u=2 z$$$:
$$\operatorname{Si}{\left({\color{red}{u}} \right)} = \operatorname{Si}{\left({\color{red}{\left(2 z\right)}} \right)}$$
Therefore,
$$\int{\frac{\sin{\left(2 z \right)}}{z} d z} = \operatorname{Si}{\left(2 z \right)}$$
Add the constant of integration:
$$\int{\frac{\sin{\left(2 z \right)}}{z} d z} = \operatorname{Si}{\left(2 z \right)}+C$$
Answer
$$$\int \frac{\sin{\left(2 z \right)}}{z}\, dz = \operatorname{Si}{\left(2 z \right)} + C$$$A