Integral of $$$\sin^{6}{\left(2 x \right)}$$$

The calculator will find the integral/antiderivative of $$$\sin^{6}{\left(2 x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sin^{6}{\left(2 x \right)}\, dx$$$.

Solution

Let $$$u=2 x$$$.

Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

The integral can be rewritten as

$${\color{red}{\int{\sin^{6}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{6}{\left(u \right)}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \sin^{6}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\sin^{6}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin^{6}{\left(u \right)} d u}}{2}\right)}}$$

Apply the power reducing formula $$$\sin^{6}{\left(\alpha \right)} = - \frac{15 \cos{\left(2 \alpha \right)}}{32} + \frac{3 \cos{\left(4 \alpha \right)}}{16} - \frac{\cos{\left(6 \alpha \right)}}{32} + \frac{5}{16}$$$ with $$$\alpha= u $$$:

$$\frac{{\color{red}{\int{\sin^{6}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{15 \cos{\left(2 u \right)}}{32} + \frac{3 \cos{\left(4 u \right)}}{16} - \frac{\cos{\left(6 u \right)}}{32} + \frac{5}{16}\right)d u}}}}{2}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{32}$$$ and $$$f{\left(u \right)} = - 15 \cos{\left(2 u \right)} + 6 \cos{\left(4 u \right)} - \cos{\left(6 u \right)} + 10$$$:

$$\frac{{\color{red}{\int{\left(- \frac{15 \cos{\left(2 u \right)}}{32} + \frac{3 \cos{\left(4 u \right)}}{16} - \frac{\cos{\left(6 u \right)}}{32} + \frac{5}{16}\right)d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\left(- 15 \cos{\left(2 u \right)} + 6 \cos{\left(4 u \right)} - \cos{\left(6 u \right)} + 10\right)d u}}{32}\right)}}}{2}$$

Integrate term by term:

$$\frac{{\color{red}{\int{\left(- 15 \cos{\left(2 u \right)} + 6 \cos{\left(4 u \right)} - \cos{\left(6 u \right)} + 10\right)d u}}}}{64} = \frac{{\color{red}{\left(\int{10 d u} - \int{15 \cos{\left(2 u \right)} d u} + \int{6 \cos{\left(4 u \right)} d u} - \int{\cos{\left(6 u \right)} d u}\right)}}}{64}$$

Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=10$$$:

$$- \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\int{10 d u}}}}{64} = - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\left(10 u\right)}}}{64}$$

Let $$$v=6 u$$$.

Then $$$dv=\left(6 u\right)^{\prime }du = 6 du$$$ (steps can be seen »), and we have that $$$du = \frac{dv}{6}$$$.

Therefore,

$$\frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\int{\cos{\left(6 u \right)} d u}}}}{64} = \frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{6} d v}}}}{64}$$

Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{6}$$$ and $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$\frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{6} d v}}}}{64} = \frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{6}\right)}}}{64}$$

The integral of the cosine is $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{384} = \frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\sin{\left(v \right)}}}}{384}$$

Recall that $$$v=6 u$$$:

$$\frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{\sin{\left({\color{red}{v}} \right)}}{384} = \frac{5 u}{32} - \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{\sin{\left({\color{red}{\left(6 u\right)}} \right)}}{384}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=15$$$ and $$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$:

$$\frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\int{15 \cos{\left(2 u \right)} d u}}}}{64} = \frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{{\color{red}{\left(15 \int{\cos{\left(2 u \right)} d u}\right)}}}{64}$$

Let $$$v=2 u$$$.

Then $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (steps can be seen »), and we have that $$$du = \frac{dv}{2}$$$.

Therefore,

$$\frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 {\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{64} = \frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{64}$$

Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$\frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{64} = \frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{64}$$

The integral of the cosine is $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 {\color{red}{\int{\cos{\left(v \right)} d v}}}}{128} = \frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 {\color{red}{\sin{\left(v \right)}}}}{128}$$

Recall that $$$v=2 u$$$:

$$\frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 \sin{\left({\color{red}{v}} \right)}}{128} = \frac{5 u}{32} - \frac{\sin{\left(6 u \right)}}{384} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} - \frac{15 \sin{\left({\color{red}{\left(2 u\right)}} \right)}}{128}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=6$$$ and $$$f{\left(u \right)} = \cos{\left(4 u \right)}$$$:

$$\frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{{\color{red}{\int{6 \cos{\left(4 u \right)} d u}}}}{64} = \frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{{\color{red}{\left(6 \int{\cos{\left(4 u \right)} d u}\right)}}}{64}$$

Let $$$v=4 u$$$.

Then $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (steps can be seen »), and we have that $$$du = \frac{dv}{4}$$$.

Thus,

$$\frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 {\color{red}{\int{\cos{\left(4 u \right)} d u}}}}{32} = \frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{32}$$

Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$\frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{32} = \frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{32}$$

The integral of the cosine is $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 {\color{red}{\int{\cos{\left(v \right)} d v}}}}{128} = \frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 {\color{red}{\sin{\left(v \right)}}}}{128}$$

Recall that $$$v=4 u$$$:

$$\frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 \sin{\left({\color{red}{v}} \right)}}{128} = \frac{5 u}{32} - \frac{15 \sin{\left(2 u \right)}}{128} - \frac{\sin{\left(6 u \right)}}{384} + \frac{3 \sin{\left({\color{red}{\left(4 u\right)}} \right)}}{128}$$

Recall that $$$u=2 x$$$:

$$- \frac{15 \sin{\left(2 {\color{red}{u}} \right)}}{128} + \frac{3 \sin{\left(4 {\color{red}{u}} \right)}}{128} - \frac{\sin{\left(6 {\color{red}{u}} \right)}}{384} + \frac{5 {\color{red}{u}}}{32} = - \frac{15 \sin{\left(2 {\color{red}{\left(2 x\right)}} \right)}}{128} + \frac{3 \sin{\left(4 {\color{red}{\left(2 x\right)}} \right)}}{128} - \frac{\sin{\left(6 {\color{red}{\left(2 x\right)}} \right)}}{384} + \frac{5 {\color{red}{\left(2 x\right)}}}{32}$$

Therefore,

$$\int{\sin^{6}{\left(2 x \right)} d x} = \frac{5 x}{16} - \frac{15 \sin{\left(4 x \right)}}{128} + \frac{3 \sin{\left(8 x \right)}}{128} - \frac{\sin{\left(12 x \right)}}{384}$$

Simplify:

$$\int{\sin^{6}{\left(2 x \right)} d x} = \frac{120 x - 45 \sin{\left(4 x \right)} + 9 \sin{\left(8 x \right)} - \sin{\left(12 x \right)}}{384}$$

Add the constant of integration:

$$\int{\sin^{6}{\left(2 x \right)} d x} = \frac{120 x - 45 \sin{\left(4 x \right)} + 9 \sin{\left(8 x \right)} - \sin{\left(12 x \right)}}{384}+C$$

Answer

$$$\int \sin^{6}{\left(2 x \right)}\, dx = \frac{120 x - 45 \sin{\left(4 x \right)} + 9 \sin{\left(8 x \right)} - \sin{\left(12 x \right)}}{384} + C$$$A


Please try a new game Rotatly