Integral of $$$i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx$$$.
Solution
Apply the power reducing formula $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ with $$$\alpha=2 x$$$:
$${\color{red}{\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}}$$
Apply the power reducing formula $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ with $$$\alpha=2 x$$$:
$${\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(x \right)} = i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)$$$:
$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}{4}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}}}{4} = \frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4}$$
Integrate term by term:
$$\frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos^{2}{\left(4 x \right)} d x}\right)}}}{4}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=i n t$$$:
$$- \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{\int{i n t d x}}}}{4} = - \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{i n t x}}}{4}$$
Apply the power reducing formula $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ with $$$\alpha=4 x$$$:
$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \cos^{2}{\left(4 x \right)} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = i n t \left(\cos{\left(8 x \right)} + 1\right)$$$:
$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\frac{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}{2}\right)}}}{4}$$
Expand the expression:
$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8}$$
Integrate term by term:
$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\int{i n t d x} + \int{i n t \cos{\left(8 x \right)} d x}\right)}}}{8}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=i n t$$$:
$$\frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{\int{i n t d x}}}}{8} = \frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{i n t x}}}{8}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=i n t$$$ and $$$f{\left(x \right)} = \cos{\left(8 x \right)}$$$:
$$\frac{i n t x}{8} - \frac{{\color{red}{\int{i n t \cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{{\color{red}{i n t \int{\cos{\left(8 x \right)} d x}}}}{8}$$
Let $$$u=8 x$$$.
Then $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{8}$$$.
So,
$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{8}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{8}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\sin{\left(u \right)}}}}{64}$$
Recall that $$$u=8 x$$$:
$$\frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{u}} \right)}}{64} = \frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{\left(8 x\right)}} \right)}}{64}$$
Therefore,
$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t x}{8} - \frac{i n t \sin{\left(8 x \right)}}{64}$$
Simplify:
$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}$$
Add the constant of integration:
$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}+C$$
Answer
$$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64} + C$$$A