Integral of $$$\sin{\left(\frac{\pi x}{30} \right)}$$$

The calculator will find the integral/antiderivative of $$$\sin{\left(\frac{\pi x}{30} \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sin{\left(\frac{\pi x}{30} \right)}\, dx$$$.

Solution

Let $$$u=\frac{\pi x}{30}$$$.

Then $$$du=\left(\frac{\pi x}{30}\right)^{\prime }dx = \frac{\pi}{30} dx$$$ (steps can be seen »), and we have that $$$dx = \frac{30 du}{\pi}$$$.

The integral can be rewritten as

$${\color{red}{\int{\sin{\left(\frac{\pi x}{30} \right)} d x}}} = {\color{red}{\int{\frac{30 \sin{\left(u \right)}}{\pi} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{30}{\pi}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$${\color{red}{\int{\frac{30 \sin{\left(u \right)}}{\pi} d u}}} = {\color{red}{\left(\frac{30 \int{\sin{\left(u \right)} d u}}{\pi}\right)}}$$

The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{30 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{30 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$

Recall that $$$u=\frac{\pi x}{30}$$$:

$$- \frac{30 \cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{30 \cos{\left({\color{red}{\left(\frac{\pi x}{30}\right)}} \right)}}{\pi}$$

Therefore,

$$\int{\sin{\left(\frac{\pi x}{30} \right)} d x} = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi}$$

Add the constant of integration:

$$\int{\sin{\left(\frac{\pi x}{30} \right)} d x} = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi}+C$$

Answer

$$$\int \sin{\left(\frac{\pi x}{30} \right)}\, dx = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi} + C$$$A


Please try a new game Rotatly