Integral of $$$- 14 x + \sin{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- 14 x + \sin{\left(x \right)}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(- 14 x + \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{14 x d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=14$$$ and $$$f{\left(x \right)} = x$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{14 x d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\left(14 \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\int{\sin{\left(x \right)} d x} - 14 {\color{red}{\int{x d x}}}=\int{\sin{\left(x \right)} d x} - 14 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\sin{\left(x \right)} d x} - 14 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- 7 x^{2} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - 7 x^{2} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Therefore,
$$\int{\left(- 14 x + \sin{\left(x \right)}\right)d x} = - 7 x^{2} - \cos{\left(x \right)}$$
Add the constant of integration:
$$\int{\left(- 14 x + \sin{\left(x \right)}\right)d x} = - 7 x^{2} - \cos{\left(x \right)}+C$$
Answer
$$$\int \left(- 14 x + \sin{\left(x \right)}\right)\, dx = \left(- 7 x^{2} - \cos{\left(x \right)}\right) + C$$$A