Integral of $$$\sin{\left(t \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(t \right)}\, dt$$$.
Solution
The integral of the sine is $$$\int{\sin{\left(t \right)} d t} = - \cos{\left(t \right)}$$$:
$${\color{red}{\int{\sin{\left(t \right)} d t}}} = {\color{red}{\left(- \cos{\left(t \right)}\right)}}$$
Therefore,
$$\int{\sin{\left(t \right)} d t} = - \cos{\left(t \right)}$$
Add the constant of integration:
$$\int{\sin{\left(t \right)} d t} = - \cos{\left(t \right)}+C$$
Answer
$$$\int \sin{\left(t \right)}\, dt = - \cos{\left(t \right)} + C$$$A
Please try a new game Rotatly