Integral of $$$\tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \tan{\left(\theta \right)} \sec{\left(\theta \right)}\, d\theta$$$.
Solution
The integral of $$$\tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$ is $$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}$$$:
$${\color{red}{\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}}} = {\color{red}{\sec{\left(\theta \right)}}}$$
Therefore,
$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}$$
Add the constant of integration:
$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}+C$$
Answer
$$$\int \tan{\left(\theta \right)} \sec{\left(\theta \right)}\, d\theta = \sec{\left(\theta \right)} + C$$$A