Integral of $$$\tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)}\, dx$$$.
Solution
Let $$$u=\tan{\left(x \right)}$$$.
Then $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(x \right)} dx = du$$$.
So,
$${\color{red}{\int{\tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{u^{2} d u}}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$${\color{red}{\int{u^{2} d u}}}={\color{red}{\frac{u^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recall that $$$u=\tan{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{3}}{3} = \frac{{\color{red}{\tan{\left(x \right)}}}^{3}}{3}$$
Therefore,
$$\int{\tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \frac{\tan^{3}{\left(x \right)}}{3}$$
Add the constant of integration:
$$\int{\tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \frac{\tan^{3}{\left(x \right)}}{3}+C$$
Answer
$$$\int \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)}\, dx = \frac{\tan^{3}{\left(x \right)}}{3} + C$$$A