Integral of $$$\sec^{2}{\left(\frac{x}{2} \right)}$$$

The calculator will find the integral/antiderivative of $$$\sec^{2}{\left(\frac{x}{2} \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sec^{2}{\left(\frac{x}{2} \right)}\, dx$$$.

Solution

Let $$$u=\frac{x}{2}$$$.

Then $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen »), and we have that $$$dx = 2 du$$$.

So,

$${\color{red}{\int{\sec^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec^{2}{\left(u \right)} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:

$${\color{red}{\int{2 \sec^{2}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec^{2}{\left(u \right)} d u}\right)}}$$

The integral of $$$\sec^{2}{\left(u \right)}$$$ is $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:

$$2 {\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\tan{\left(u \right)}}}$$

Recall that $$$u=\frac{x}{2}$$$:

$$2 \tan{\left({\color{red}{u}} \right)} = 2 \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}$$

Therefore,

$$\int{\sec^{2}{\left(\frac{x}{2} \right)} d x} = 2 \tan{\left(\frac{x}{2} \right)}$$

Add the constant of integration:

$$\int{\sec^{2}{\left(\frac{x}{2} \right)} d x} = 2 \tan{\left(\frac{x}{2} \right)}+C$$

Answer

$$$\int \sec^{2}{\left(\frac{x}{2} \right)}\, dx = 2 \tan{\left(\frac{x}{2} \right)} + C$$$A


Please try a new game Rotatly