Integral of $$$\frac{\sec{\left(x \right)}}{\cos{\left(x \right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{\sec{\left(x \right)}}{\cos{\left(x \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\sec{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$.

Solution

Rewrite the integrand:

$${\color{red}{\int{\frac{\sec{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$

The integral of $$$\sec^{2}{\left(x \right)}$$$ is $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$${\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = {\color{red}{\tan{\left(x \right)}}}$$

Therefore,

$$\int{\frac{\sec{\left(x \right)}}{\cos{\left(x \right)}} d x} = \tan{\left(x \right)}$$

Add the constant of integration:

$$\int{\frac{\sec{\left(x \right)}}{\cos{\left(x \right)}} d x} = \tan{\left(x \right)}+C$$

Answer

$$$\int \frac{\sec{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \tan{\left(x \right)} + C$$$A


Please try a new game Rotatly