Integral of $$$\frac{\sqrt{82}}{2 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sqrt{82}}{2 x}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{82}}{2}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}{\int{\frac{\sqrt{82}}{2 x} d x}}} = {\color{red}{\left(\frac{\sqrt{82} \int{\frac{1}{x} d x}}{2}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\frac{\sqrt{82} {\color{red}{\int{\frac{1}{x} d x}}}}{2} = \frac{\sqrt{82} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{2}$$
Therefore,
$$\int{\frac{\sqrt{82}}{2 x} d x} = \frac{\sqrt{82} \ln{\left(\left|{x}\right| \right)}}{2}$$
Add the constant of integration:
$$\int{\frac{\sqrt{82}}{2 x} d x} = \frac{\sqrt{82} \ln{\left(\left|{x}\right| \right)}}{2}+C$$
Answer
$$$\int \frac{\sqrt{82}}{2 x}\, dx = \frac{\sqrt{82} \ln\left(\left|{x}\right|\right)}{2} + C$$$A