Integral of $$$r^{n}$$$ with respect to $$$n$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int r^{n}\, dn$$$.
Solution
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=r$$$:
$${\color{red}{\int{r^{n} d n}}} = {\color{red}{\frac{r^{n}}{\ln{\left(r \right)}}}}$$
Therefore,
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}$$
Add the constant of integration:
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}+C$$
Answer
$$$\int r^{n}\, dn = \frac{r^{n}}{\ln\left(r\right)} + C$$$A
Please try a new game Rotatly