Integral of $$$r^{m}$$$ with respect to $$$m$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int r^{m}\, dm$$$.
Solution
Apply the exponential rule $$$\int{a^{m} d m} = \frac{a^{m}}{\ln{\left(a \right)}}$$$ with $$$a=r$$$:
$${\color{red}{\int{r^{m} d m}}} = {\color{red}{\frac{r^{m}}{\ln{\left(r \right)}}}}$$
Therefore,
$$\int{r^{m} d m} = \frac{r^{m}}{\ln{\left(r \right)}}$$
Add the constant of integration:
$$\int{r^{m} d m} = \frac{r^{m}}{\ln{\left(r \right)}}+C$$
Answer
$$$\int r^{m}\, dm = \frac{r^{m}}{\ln\left(r\right)} + C$$$A
Please try a new game Rotatly