Integral of $$$r^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int r^{2}\, dr$$$.
Solution
Apply the power rule $$$\int r^{n}\, dr = \frac{r^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$${\color{red}{\int{r^{2} d r}}}={\color{red}{\frac{r^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{r^{3}}{3}\right)}}$$
Therefore,
$$\int{r^{2} d r} = \frac{r^{3}}{3}$$
Add the constant of integration:
$$\int{r^{2} d r} = \frac{r^{3}}{3}+C$$
Answer
$$$\int r^{2}\, dr = \frac{r^{3}}{3} + C$$$A
Please try a new game Rotatly