Integral of $$$\frac{n}{d}$$$ with respect to $$$d$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{n}{d}\, dd$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(d \right)}\, dd = c \int f{\left(d \right)}\, dd$$$ with $$$c=n$$$ and $$$f{\left(d \right)} = \frac{1}{d}$$$:
$${\color{red}{\int{\frac{n}{d} d d}}} = {\color{red}{n \int{\frac{1}{d} d d}}}$$
The integral of $$$\frac{1}{d}$$$ is $$$\int{\frac{1}{d} d d} = \ln{\left(\left|{d}\right| \right)}$$$:
$$n {\color{red}{\int{\frac{1}{d} d d}}} = n {\color{red}{\ln{\left(\left|{d}\right| \right)}}}$$
Therefore,
$$\int{\frac{n}{d} d d} = n \ln{\left(\left|{d}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{n}{d} d d} = n \ln{\left(\left|{d}\right| \right)}+C$$
Answer
$$$\int \frac{n}{d}\, dd = n \ln\left(\left|{d}\right|\right) + C$$$A