Integral of $$$x \ln\left(10\right)$$$

The calculator will find the integral/antiderivative of $$$x \ln\left(10\right)$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x \ln\left(10\right)\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\ln{\left(10 \right)}$$$ and $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{x \ln{\left(10 \right)} d x}}} = {\color{red}{\ln{\left(10 \right)} \int{x d x}}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$\ln{\left(10 \right)} {\color{red}{\int{x d x}}}=\ln{\left(10 \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\ln{\left(10 \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Therefore,

$$\int{x \ln{\left(10 \right)} d x} = \frac{x^{2} \ln{\left(10 \right)}}{2}$$

Add the constant of integration:

$$\int{x \ln{\left(10 \right)} d x} = \frac{x^{2} \ln{\left(10 \right)}}{2}+C$$

Answer

$$$\int x \ln\left(10\right)\, dx = \frac{x^{2} \ln\left(10\right)}{2} + C$$$A


Please try a new game Rotatly