Integral of $$$a^{x} \ln\left(a\right)$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int a^{x} \ln\left(a\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\ln{\left(a \right)}$$$ and $$$f{\left(x \right)} = a^{x}$$$:
$${\color{red}{\int{a^{x} \ln{\left(a \right)} d x}}} = {\color{red}{\ln{\left(a \right)} \int{a^{x} d x}}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$$\ln{\left(a \right)} {\color{red}{\int{a^{x} d x}}} = \ln{\left(a \right)} {\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}$$
Therefore,
$$\int{a^{x} \ln{\left(a \right)} d x} = a^{x}$$
Add the constant of integration:
$$\int{a^{x} \ln{\left(a \right)} d x} = a^{x}+C$$
Answer
$$$\int a^{x} \ln\left(a\right)\, dx = a^{x} + C$$$A