Integral of $$$a f - b f$$$ with respect to $$$a$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(a f - b f\right)\, da$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(a f - b f\right)d a}}} = {\color{red}{\left(\int{a f d a} - \int{b f d a}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ with $$$c=f$$$ and $$$f{\left(a \right)} = a$$$:
$$- \int{b f d a} + {\color{red}{\int{a f d a}}} = - \int{b f d a} + {\color{red}{f \int{a d a}}}$$
Apply the power rule $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$f {\color{red}{\int{a d a}}} - \int{b f d a}=f {\color{red}{\frac{a^{1 + 1}}{1 + 1}}} - \int{b f d a}=f {\color{red}{\left(\frac{a^{2}}{2}\right)}} - \int{b f d a}$$
Apply the constant rule $$$\int c\, da = a c$$$ with $$$c=b f$$$:
$$\frac{a^{2} f}{2} - {\color{red}{\int{b f d a}}} = \frac{a^{2} f}{2} - {\color{red}{a b f}}$$
Therefore,
$$\int{\left(a f - b f\right)d a} = \frac{a^{2} f}{2} - a b f$$
Simplify:
$$\int{\left(a f - b f\right)d a} = \frac{a f \left(a - 2 b\right)}{2}$$
Add the constant of integration:
$$\int{\left(a f - b f\right)d a} = \frac{a f \left(a - 2 b\right)}{2}+C$$
Answer
$$$\int \left(a f - b f\right)\, da = \frac{a f \left(a - 2 b\right)}{2} + C$$$A