Integral of $$$\frac{e^{a}}{b}$$$ with respect to $$$a$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{a}}{b}\, da$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ with $$$c=\frac{1}{b}$$$ and $$$f{\left(a \right)} = e^{a}$$$:
$${\color{red}{\int{\frac{e^{a}}{b} d a}}} = {\color{red}{\frac{\int{e^{a} d a}}{b}}}$$
The integral of the exponential function is $$$\int{e^{a} d a} = e^{a}$$$:
$$\frac{{\color{red}{\int{e^{a} d a}}}}{b} = \frac{{\color{red}{e^{a}}}}{b}$$
Therefore,
$$\int{\frac{e^{a}}{b} d a} = \frac{e^{a}}{b}$$
Add the constant of integration:
$$\int{\frac{e^{a}}{b} d a} = \frac{e^{a}}{b}+C$$
Answer
$$$\int \frac{e^{a}}{b}\, da = \frac{e^{a}}{b} + C$$$A