Integral of $$$e^{\sqrt{x}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{\sqrt{x}}\, dx$$$.
Solution
Let $$$u=\sqrt{x}$$$.
Then $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (steps can be seen »), and we have that $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
The integral can be rewritten as
$${\color{red}{\int{e^{\sqrt{x}} d x}}} = {\color{red}{\int{2 u e^{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = u e^{u}$$$:
$${\color{red}{\int{2 u e^{u} d u}}} = {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$
For the integral $$$\int{u e^{u} d u}$$$, use integration by parts $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$.
Let $$$\operatorname{\omega}=u$$$ and $$$\operatorname{dv}=e^{u} du$$$.
Then $$$\operatorname{d\omega}=\left(u\right)^{\prime }du=1 du$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (steps can be seen »).
The integral becomes
$$2 {\color{red}{\int{u e^{u} d u}}}=2 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=2 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$2 u e^{u} - 2 {\color{red}{\int{e^{u} d u}}} = 2 u e^{u} - 2 {\color{red}{e^{u}}}$$
Recall that $$$u=\sqrt{x}$$$:
$$- 2 e^{{\color{red}{u}}} + 2 {\color{red}{u}} e^{{\color{red}{u}}} = - 2 e^{{\color{red}{\sqrt{x}}}} + 2 {\color{red}{\sqrt{x}}} e^{{\color{red}{\sqrt{x}}}}$$
Therefore,
$$\int{e^{\sqrt{x}} d x} = 2 \sqrt{x} e^{\sqrt{x}} - 2 e^{\sqrt{x}}$$
Simplify:
$$\int{e^{\sqrt{x}} d x} = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}$$
Add the constant of integration:
$$\int{e^{\sqrt{x}} d x} = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}+C$$
Answer
$$$\int e^{\sqrt{x}}\, dx = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}} + C$$$A