Integral of $$$x e^{37} \ln\left(x\right)$$$

The calculator will find the integral/antiderivative of $$$x e^{37} \ln\left(x\right)$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x e^{37} \ln\left(x\right)\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=e^{37}$$$ and $$$f{\left(x \right)} = x \ln{\left(x \right)}$$$:

$${\color{red}{\int{x e^{37} \ln{\left(x \right)} d x}}} = {\color{red}{e^{37} \int{x \ln{\left(x \right)} d x}}}$$

For the integral $$$\int{x \ln{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\ln{\left(x \right)}$$$ and $$$\operatorname{dv}=x dx$$$.

Then $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (steps can be seen »).

Therefore,

$$e^{37} {\color{red}{\int{x \ln{\left(x \right)} d x}}}=e^{37} {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x} d x}\right)}}=e^{37} {\color{red}{\left(\frac{x^{2} \ln{\left(x \right)}}{2} - \int{\frac{x}{2} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = x$$$:

$$e^{37} \left(\frac{x^{2} \ln{\left(x \right)}}{2} - {\color{red}{\int{\frac{x}{2} d x}}}\right) = e^{37} \left(\frac{x^{2} \ln{\left(x \right)}}{2} - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}\right)$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$e^{37} \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{{\color{red}{\int{x d x}}}}{2}\right)=e^{37} \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}\right)=e^{37} \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}\right)$$

Therefore,

$$\int{x e^{37} \ln{\left(x \right)} d x} = \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{x^{2}}{4}\right) e^{37}$$

Simplify:

$$\int{x e^{37} \ln{\left(x \right)} d x} = \frac{x^{2} \left(2 \ln{\left(x \right)} - 1\right) e^{37}}{4}$$

Add the constant of integration:

$$\int{x e^{37} \ln{\left(x \right)} d x} = \frac{x^{2} \left(2 \ln{\left(x \right)} - 1\right) e^{37}}{4}+C$$

Answer

$$$\int x e^{37} \ln\left(x\right)\, dx = \frac{x^{2} \left(2 \ln\left(x\right) - 1\right) e^{37}}{4} + C$$$A


Please try a new game Rotatly