Integral of $$$\frac{1}{11} - \tan^{2}{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{11} - \tan^{2}{\left(x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(\frac{1}{11} - \tan^{2}{\left(x \right)}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(\frac{1}{11} - \tan^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{11} d x} - \int{\tan^{2}{\left(x \right)} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\frac{1}{11}$$$:

$$- \int{\tan^{2}{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{11} d x}}} = - \int{\tan^{2}{\left(x \right)} d x} + {\color{red}{\left(\frac{x}{11}\right)}}$$

Let $$$u=\tan{\left(x \right)}$$$.

Then $$$x=\operatorname{atan}{\left(u \right)}$$$ and $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (steps can be seen »).

So,

$$\frac{x}{11} - {\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = \frac{x}{11} - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

Rewrite and split the fraction:

$$\frac{x}{11} - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = \frac{x}{11} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integrate term by term:

$$\frac{x}{11} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = \frac{x}{11} - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:

$$\frac{x}{11} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \frac{x}{11} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- u + \frac{x}{11} + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + \frac{x}{11} + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Recall that $$$u=\tan{\left(x \right)}$$$:

$$\frac{x}{11} + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \frac{x}{11} + \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} - {\color{red}{\tan{\left(x \right)}}}$$

Therefore,

$$\int{\left(\frac{1}{11} - \tan^{2}{\left(x \right)}\right)d x} = \frac{x}{11} - \tan{\left(x \right)} + \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

Simplify:

$$\int{\left(\frac{1}{11} - \tan^{2}{\left(x \right)}\right)d x} = \frac{12 x}{11} - \tan{\left(x \right)}$$

Add the constant of integration:

$$\int{\left(\frac{1}{11} - \tan^{2}{\left(x \right)}\right)d x} = \frac{12 x}{11} - \tan{\left(x \right)}+C$$

Answer

$$$\int \left(\frac{1}{11} - \tan^{2}{\left(x \right)}\right)\, dx = \left(\frac{12 x}{11} - \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly